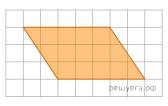

Централизованное тестирование по математике, 2011

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Функция y = ctg x не определена в точке:

2. На клетчатой бумаге с клетками размером 1 см х 1 см изображён параллелограмм. Найдите его площадь в квадратных сантимет-

1) 20 2) 12 3) 10

5) 18

3. Если $2\frac{3}{5}$: $x = 3\frac{5}{7}$: $1\frac{1}{14}$ — верная пропорция, то число x равно:

1)
$$\frac{4}{3}$$
 2) 1,75 3) $\frac{3}{4}$ 4) 3,4 5) 4

3)
$$\frac{3}{4}$$

4. Если 16% некоторого числа равны 28, то 60% этого числа равны:

4) 98

5) 105

5. Если 4x + 13 = 0, то 8x + 39 равно:

6. Результат упрощения выражения $5^{2x+1} - 5^{2x}$ имеет вид:

1)
$$5^{\frac{2x+1}{2x}}$$

1)
$$5^{\frac{2x+1}{2x}}$$
 2) 5 3) $4 \cdot 5^{2x}$ 4) 5^{4x+1}

1)
$$5^{4x+1}$$

7. Сумма корней (или корень, если он один) уравнения $(x+7)\sqrt{x-2} = 0$ равна:

1)
$$-7$$
 2) 2 3) -5 4) -2 5) 7

8. От листа жести, имеющего форму квадрата, отрезали прямоугольную полосу шириной 2 дм, после чего площадь оставшейся части листа оказалась равной 35 дм². Длина стороны квадратного листа (в дециметрах) была равна:

9. Значение выражения $7^{-11} \cdot (7^{-2})^{-5}$ равно:

3)
$$\frac{1}{7}$$

1) 49 2) 7 3)
$$\frac{1}{7}$$
 4) 7^{-18} 5) 7^{-21}

10. Площадь осевого сечения цилиндра равна 8. Площадь его боковой поверхности равна:

$$1) 4\pi$$

1)
$$4\pi$$
 2) 16π

11. Найдите значение выражения $240 \cdot \frac{2}{5} - \left(\frac{2}{5} + \frac{1}{10}\right) : \frac{1}{240}$.

1) 0,1

2) -24 3) -0,1 4) 81,6 5) 24

12. Упростите выражение $\frac{x^2-8x+16}{x^2-4x}:\frac{x^2-16}{x^3}$.

1) $\frac{(x-4)^2}{x^4}$ 2) $\frac{x^2}{x-4}$ 3) $\frac{x-4}{x+4}$ 4) $\frac{x}{x+4}$ 5) $\frac{x^2}{x+4}$

13. Параллельно стороне треугольника, равной 7, проведена прямая. Длина отрезка этой прямой, заключенного между сторонами треугольника, равна 4. Найдите отношение площади полученной трапеции к площади исходного треугольника.

1) $\frac{4}{7}$ 2) 0,6 3) $\frac{33}{49}$ 4) $\frac{16}{49}$ 5) $\frac{3}{7}$

14. Сумма координат точки пересечения прямых, заданных уравнениями 3x + 2y = 31 и x - y = 7(3 - y), равна:

1) 11 2) -11

15. Количество целых решений неравенства $\frac{(x-3)^2+6x-25}{(x-6)^2}>0$ на промежутке [-6; 6] равно:

1)4

2)9

3)6

4) 3 5) 7

16. В ромб площадью $16\sqrt{5}$ вписан круг площадью 5π . Сторона ромба равна:

1) 8 2) 4 3) $\frac{16\sqrt{5}}{5}$ 4) $\frac{8\sqrt{5}}{5}$ 5) 16

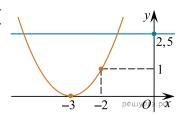
17. Расположите числа $\sqrt[4]{3}$; $\sqrt[20]{180}$; $\sqrt[5]{4}$ в порядке возрастания.

1) $\sqrt[20]{180}$; $\sqrt[4]{3}$; $\sqrt[5]{4}$; 2) $\sqrt[5]{4}$; $\sqrt[20]{180}$; $\sqrt[4]{3}$; 3) $\sqrt[4]{3}$; $\sqrt[5]{4}$; $\sqrt[20]{180}$; 4) $\sqrt[20]{180}$; $\sqrt[5]{4}$; $\sqrt[4]{3}$; 5) $\sqrt[5]{4}$; $\sqrt[4]{3}$; $\sqrt[20]{180}$

18. Найдите наименьший положительный корень **уравнения** $2\sin^2 x + \cos x + 1 = 0.$

1) 0 2) π 3) $\pi - \arccos \frac{3}{2}$ 4) $\frac{\pi}{2}$ 5) $\arccos \frac{3}{2}$

19. Найдите произведение корней уравнения $\frac{3}{x+2} + 1 = \frac{4}{x^2 + 4x + 4}$.


20. Диагонали трапеции равны 12 и 9. Найдите площадь трапеции, если ее средняя линия равна 7,5.

21. Сумма корней (и $2^{\log_3 x} = 96 - 2 \cdot x^{\log_3 2}$ равна ... корень, еспи один) vравнения

22. Найдите сумму целых решений неравенства $2^{3x+1} - 9 \cdot 4^x + 2^{x+2} \le 0$.

23. По двум перпендикулярным прямым, которые пересекаются в точке O, движутся две точки M_1 и M_2 по направлению к точке O со скоростями 1 $\frac{\mathrm{M}}{\mathrm{c}}$ и 2 $\frac{\mathrm{M}}{\mathrm{c}}$ соответственно. Достигнув точки О, они продолжают свое движение. В первоначальный момент времени $M_1O = 2$ м, $M_2O = 9$ м. Через сколько секунд расстояние между точками M_1 и M_2 будет минимальным?

24. Найдите $4x_1 \cdot x_2$, где x_1 , x_2 — абсциссы точек пересечения параболы и горизонтальной прямой (см.рис.).

25. Четырёхугольник ABCD вписан в окружность. Если $\angle BAC=15^\circ,\ \angle ABD=80^\circ,$ то градусная мера между прямыми AB и CD равна

26. Найдите значение выражения:
$$\frac{\sin^2 112^\circ}{2\sin^2 14^\circ \cdot \sin^2 34^\circ \cdot \sin^2 62^\circ \cdot \sin^2 76^\circ}.$$

- **27.** В арифметической прогрессии 90 членов, их сумма равна 990, а сумма членов с нечетными номерами на 90 больше суммы членов с четными номерами. Найдите тридцатый член этой прогрессии.
- **28.** В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α . Боковая сторона образует с плоскостью α угол, синус которого равен $\frac{5\sqrt{3}}{21}$. Найдите $21\sin\beta$, где β угол между диагональю трапеции и плоскостью α .
 - **29.** Количество целых решений неравенства $7^{x+3} + \log_{0,2}(23-x) > 5$ равно
- **30.** Основанием пирамиды SABCD является ромб со стороной $6\sqrt{2}$ и углом BAD, равным $\arccos\frac{3}{4}$. Ребро SD перпендикулярно основанию, а ребро SB образует с основанием угол 60° . Найдите радиус R сферы, проходящей через точки A, B, C и середину ребра SB. В ответ запишите значение выражения R^2 .